
ORIGINAL ARTICLE

Reconstruction and recognition of face and digit images
using autoencoders

Chun Chet Tan • C. Eswaran

Received: 19 March 2009 / Accepted: 23 April 2010 / Published online: 20 May 2010

� Springer-Verlag London Limited 2010

Abstract This paper presents techniques for image

reconstruction and recognition using autoencoders. Exper-

iments are conducted to compare the performances of three

types of autoencoder neural networks based on their effi-

ciency of reconstruction and recognition. Reconstruction

error and recognition rate are determined in all the three

cases using the same architecture configuration and training

algorithm. The results obtained with autoencoders are also

compared with those obtained using principal component

analysis method. Instead of whole images, image patches

are used for training, and this leads to much simpler auto-

encoder architectures and reduced training time.

Keywords Autoencoder � Neural network �
Restricted Boltzmann machine � Image patches �
Reconstruction � Recognition

1 Introduction

Autoencoder networks are feed-forward neural networks

that can have more than one hidden layer. These networks

attempt to reconstruct the input data at the output layer. The

targets at the output layer are the same as the input data, thus

the size of the output layer is also the same as the size of the

input layer. Autoencoders are supervised neural networks,

which are trained using a gradient descent method, such as

backpropagation (BP). Since the size of the hidden layer in

an autoencoder is smaller than the size of the input data, the

dimensionality of input data is reduced to a smaller-

dimensional code space at the hidden layer. The outputs

from the hidden layer are then reconstructed into the ori-

ginal data at the output layer. Like principal component

analysis (PCA), the autoencoders can give mappings in both

directions between the data and the code space.

Using more number of hidden layers in an autoencoder

neural network, a high-dimensional input data can be

reduced to much smaller code space. However, training a

multilayer network with more than one hidden layer is

tedious, and further it will not also give good results [1].

This is due to the fact that the weights at deep hidden layers

are hardly optimized. The time required for training such a

network is also extremely high. There exist two techniques

for solving the training problem, namely, stacking and

Restricted Boltzmann Machine (RBM) [1, 2].

Though the main focus of this paper is not image rec-

ognition but only image reconstruction, we do investigate

the correlation between the reconstruction and the recog-

nition of the images. For details on the applications of the

image reconstruction including image compression, one

can refer to [3]. In this paper, we compare the recon-

struction and recognition performances of the following

three types of autoencoders:

1. Stacked autoencoder in which BP is applied multiple

times i.e. once for each stacking (termed as SA-MBP).

2. Stacked autoencoder using RBM (SRBM) in which BP

is applied only once at the end of last stacking (termed

as SRBM-SBP) (the model from [1]).

3. SRBM in which BP is applied multiple times i.e. once

for each stacking (termed as SRBM-MBP).

The reconstruction performances are compared based on

the mean squared error (MSE) of the reconstructed images.

C. C. Tan (&) � C. Eswaran

Faculty of Information Technology, Multimedia University,

63100 Cyberjaya, Selangor, Malaysia

e-mail: cctan@mmu.edu.my

C. Eswaran

e-mail: eswaran@mmu.edu.my

123

Neural Comput & Applic (2010) 19:1069–1079

DOI 10.1007/s00521-010-0378-4



On the other hand, the recognition performances are

compared based on the recognition rate. For all the three

networks, identical architecture configurations and training

methods are used for comparison. We also compare the

performances of the autoencoders with that of a statistical

linear method, PCA using the same datasets and same

number of dimensions. Finally, experiments are conducted

to measure the reconstruction and recognition perfor-

mances of SRBM-MBP network with much simpler

architecture that uses image patches for training.

The remainder of this paper is organized as follows: In

Sect. 2, the architecture of autoencoder is described and in

Sect. 3, the training methods are presented. Image recon-

struction using autoencoders is explained in Sect. 4. Sec-

tion 5 describes the experiments conducted for image

recognition. Finally, the conclusions are given in Sect. 6.

2 Architecture

The architecture of a five-layer autoencoder neural network

is depicted in Fig. 1. An autoencoder is a feed-forward

neural network with one or more hidden layers that

attempts to reconstruct its input activities at its output.

Hence, the main difference of the autoencoder and the

traditional neural network is the size of the output layer. In

an autoencoder, the size of the output layer is always the

same as the size of the input layer. Besides that, the size of

the deepest hidden layer in an autoencoder network is

always smaller than the sizes of the input and output layers.

As shown in Fig. 1, the autoencoder network comprises

two components namely ‘‘encoder’’ and ‘‘decoder’’. The

‘‘Encoder’’ part of the network transforms the high-

dimensional input data into a low-dimensional code and the

‘‘decoder’’ part (which is similar to the ‘‘encoder’’ network)

reconstructs the original high-dimensional data from the

low-dimensional code.

Sigmoid activation functions are normally used in auto-

encoders for nonlinear mapping. If linear activation func-

tions are used, autoencoders will be performing similar to

PCA. The networks can be trained by minimizing the mean

squared error between the original and the reconstructed

data. The required gradient is easily obtained using the chain

rule to back propagate the error derivatives first through the

decoder network and then through the encoder network.

3 Training methods

3.1 Polak Ribiére conjugate gradient backpropagation

Polak Ribiére conjugate gradient backpropagation (PR-BP)

is used to train the autoencoders in our study [4]. Conjugate

backpropagation is one of the variations of backpropaga-

tion. It speeds up the training process compared to the

traditional backpropagation with momentum. Line search

function of conjugate is used to locate the minimum point

in the error function. The first search direction is the neg-

ative of the gradient of performance. In the succeeding

iterations, the search direction is computed according to the

formula

pk ¼ �gk þ bkpk�1 ð1Þ

where gk is the new gradient and pk-1 is the previous search

direction. The parameter bk can be computed in different

ways. For the Polak Ribiére variation of conjugate

gradient, it is computed according to

bk ¼
DgT

k�1gk

gk�1gk�1

ð2Þ

where it is a inner product of the previous change in the

gradient with the current gradient divided by the norm

squared of the previous gradient.

3.2 Stacked autoencoder

It is difficult to optimize the weights in autoencoders that

have multiple hidden layers (C2). Autoencoders with large

initial weights normally suffer from the problem of local

minima. On the other hand, autoencoders with small initial

weights take considerably long time to converge [1].

A method for training the deep networks is explained in

[5]. In this method, the training is implemented in phases.

During the first phase, the autoencoder is assumed to have

three layers, namely, input layer x, output layer y and the

hidden layer h1 as shown in Fig. 2a. The weights W1 and

W01 are trained using backpropagation. During the second

phase as depicted in Fig. 2b, a separate one-hidden-layer

Fig. 1 Multilayer autoencoder neural network architecture

1070 Neural Comput & Applic (2010) 19:1069–1079

123



network consisting of input layer h1, output layer h01 and

hidden layer h2 is stacked onto the existing autoencoder of

Fig. 2a. The inputs to the input layer h1 are x00, x01,

x02,…, x0m-1, where x0j = zj.

Since the size and the value of the input and output

layers of an autoencoder are the same, output layer h01 is

the same as the input layer h1. Hidden layer h2 is a new

hidden layer added onto the autoencoder. The weights of

W2 and W02 can be trained using backpropagation. After the

training of the separate one-hidden-layer network is com-

pleted, all the weights of the autoencoder are trained

together to converge to a global minima. This kind of

autoencoders is called stacked autoassociators [5]. Figure 2

illustrates the iterative training procedure. With this

method, a deep autoencoder with more than one single

hidden layer can be trained to converge.

3.3 Restricted Boltzmann machine (RBM)

An alternative method for training the multilayer autoen-

coders was proposed by Hinton et al. [1]. All the weights

of the multilayer autoencoder can be trained in a single step

provided the weights are pre-trained with RBM. Since the

weights are close to the good solution after RBM pre-

training, backpropagation works well for fine-tuning the

weights in the multilayer autoencoders.

For an image input, the RBM can be modeled as a two-

layer network in which the energy function of pixels con-

nected to feature detectors is given by

Eðv; hÞ ¼ �
X

i2pixels

vibi �
X

j2features

bjhj �
X

i;j

vihjwij ð3Þ

where vi and hj are the binary states of pixel i (visible unit)

and feature j (hidden unit), bi and bj are the biases,

respectively, and wij is the weight between the visible(input)

unit i and the invisible(hidden) unit j. Given a training

image, hj of each feature j is set to 1 with probability pðbj þP
i viwijÞ where p(x) is a logistic function. The network

eventually will reach a Boltzmann distribution in which the

probability of the equilibrium state, v, is determined solely

by the ‘‘energy’’ of that state vector relative to the energy of

all possible binary state vectors as shown below [6]

PðvÞ ¼ expð�Eðv; hÞÞP
expð�Eðv0; h0ÞÞ ð4Þ

By differentiating (4) and using the fact that

oEðvÞ
owij

¼ �vihj; ð5Þ

The change in weight can be derived as

Dwij ¼ � ologPðvÞ=owij

� �

¼ �ð vihj

� �
data
� vihj

� �
model
Þ

ð6Þ

where e is the learning rate, :h idata is an expected value in

the data distribution and :h imodel is an expected value of

Boltzmann sampling state vectors from its equilibrium

distribution at temperature 1 [7, 8]. The temperature will be

increased as the learning converges. The same learning rule

is applied to the biases, bi and bj.

The hidden units of the Boltzmann possess properties

like latent variables that allow the RBM to model the

distributions over visible vectors that cannot otherwise be

modeled by direct pairwise interactions between the visible

units. This enables the RBM to learn higher-order structure

in the data.

As reported in [8], an alternative way of using RBM is

to treat the learning of RBM as a pre-training that finds a

good region of the parameter space. After pre-training, the

RBM is considered to be ‘‘unfolded’’ into an autoencoder

network in which the stochastic activities of the binary

hidden features are replaced with deterministic probabili-

ties. Figure 3 shows the pre-training of a stack of RBMs

and a multilayer autoencoder created from the pre-training

and stacking of RBMs.

After the multilayer autoencoder is created, PR back-

propagation can be used to fine-tune the weights of auto-

encoders provided the initial weights and biases are close

to the optimum solution.

All the weights of the multilayer autoencoder can be

fine-tuned in a single step provided the weights are pre-

trained with RBM. Since the weights are close to a good

solution after RBM pre-training, PR backpropagation

works well for fine-tuning the weights in the multilayer

autoencoders.

(a) (b)

Fig. 2 Stacked autoencoder

Neural Comput & Applic (2010) 19:1069–1079 1071

123



4 Image reconstruction using autoencoders

The image reconstruction problem starts with the training

of autoencoders. The sizes of the hidden layers are pre-

fixed. Training images are fed into the autoencoders to

fine-tune the weights. The encoder part of the autoencoder

reduces the dimensionality of the image pixels and repre-

sents them in a smaller code space in the middle hidden

layer. The codes are then reconstructed back into images

by the decoder part of the autoencoder at the output layer.

The MSEs are used to measure the reconstruction

performance.

In the experiment for comparing the three autoencoders,

the weights and biases of the stacked autoencoder SA-MBP

are initialized with the small random values. On the other

hand, the weights and biases of the stacked RBMs, namely,

SRBM-SBP and SRBM-MBP are initialized with the same

method but pre-trained according to the Boltzmann learn-

ing rule in Eq. 6. The training of the autoencoder starts

with one hidden layer, and the outputs from the hidden

layer are then used for training the next autoencoder. The

new autoencoder is going through the same process of

training. Both the trained autoencoders will then be stacked

into a single autoencoder with three hidden layers. The

weights and biases of the SA-MBP are fine-tuned using the

PR backpropagation after every stacking. The same fine-

tune process is also applied to the SRBM-MBP. PR

backpropagation is carried out only after the last stacking

for the SRBM-SBP.

The second experiment is conducted to evaluate the

effect of using image patches (instead of whole image) for

training the autoencoder. For this experiment, only SRBM-

MBP is made use of. Image patches are sampled consec-

utively from the original images. All the other parameters

remain the same as the previous experiment except the

layer sizes. The layers are of smaller sizes compared to

those in the previous experiment. Using image patches

reduces the layer sizes and also the training time signifi-

cantly even though the training epochs are the same.

Next experiments are conducted to evaluate the perfor-

mance of PCA for image reconstruction and recognition.

Let Pk and F represent the k-dimensional eigenvectors that

hold the principal components and the matrix of eigen-

images, respectively. Pk and F are related as

F ¼ PT
k ðX � lÞ ð7Þ

where X and l represent, respectively, the original images

and the eigenvalues. For reconstructing the original images

from the k-dimensional eigenvectors, the following

equation is used.

X̂ ¼ PkF þ l ð8Þ

The difference between the reconstructed images X̂ and the

original images is calculated in terms of mean squared

error.

For face image reconstruction, Olivetti Research Labo-

ratory (ORL) face dataset is used in our experiments. On

the other hand, MNIST dataset of handwritten digits is used

for the handwritten digit image reconstruction. The MNIST

dataset is a subset of a larger dataset available from the

National Institute of Standards and Technology (NIST).

The training and testing sets are divided according to most

of the other benchmarking experiments carried out by other

researchers.

4.1 Reconstruction on ORL face dataset

The dataset contains 400 images of size 112 9 92 for forty

different people with 10 images for each person. The

images are rescaled to size 37 9 30 using nearest neighbor

interpolation. The pixel values of the images are then

normalized to be in the range from 0 to 1. The dataset is

then divided into 200 training images, which contain the

first five images of each person, and 200 test images, which

contain the last five images of each person.

4.1.1 Training with the whole image

The layer sizes of the autoencoders are preset as follows:

(37 9 30)-500-300-100-30-100-300-500-1110. The preset

sizes might not be optimum. However, they are found to be

reasonably fit compared to the other configurations by

experiments. The deepest hidden layer (with 30 neurons)

uses linear activation function, while the other layers use

sigmoid activation functions. All the layers are fully

connected.

Starting from a conventional one-hidden-layer network,

the stacked autoencoder is initialized with small random

weights and biases ranging from 0 to 0.1. For the two

(a) (b)

Fig. 3 a Pre-training of a stack of RBMs. b After pre-training and

stacking, a multilayer autoencoder composed of RBMs is created

1072 Neural Comput & Applic (2010) 19:1069–1079

123



architectures of stacked RBM, the weights and biases are

pre-trained using RBM for 50 epochs. The number of

epochs used for training the different layers of SA-MBP

and SRBM-MBP is 50?10?50?10?50?10?50. For

SRBM-SBP, the same number of total epochs, namely 230

is applied for training. The details of the training using PR

backpropagation are illustrated in Fig. 4. The RBM pre-

training is not shown in the figure.

Figure 5 shows the test results obtained for SA-MBP. It

is seen from the figure that the MSE for both training and

testing phases are high (spikes) at the beginning of the

training of each individual network, and they have slower

convergence in the end. Figure 6 shows the zoom-in view

of Fig. 5. From this figure, we observe that this model has

very low difference between the training and testing MSEs

compared to two RBM architectures.

The plot of MSE for SRBM-SBP is shown in Fig. 7. The

figure reveals that the RBM pre-trains the autoencoder

effectively as seen by the good convergence of the training

phase. However, this does not happen in the testing phase,

since the SRBM-SBP is too focused to the training data

rather than to the testing data.

Figure 8 shows the performance of the SRBM-MBP. It

is clear from this figure that the RBM has proven to be a

good pre-training method as it leads to a faster convergence

compared to the SA-MBP. The same phenomenon, namely,

better convergence for training data occurs in this archi-

tecture also and as a result, the MSE between the training

and testing phases is high.

One important phenomenon observed from these

experiments is that the RBM pre-training tends to make the

autoencoders more focused on the training data, resulting

in a low generalization for testing data. The difference

between the training and testing MSEs is higher in the case

of SRBM-SBP and SRBM-MBP compared to SA-MBP.

This is possibly caused by the fact that the amount of

training data is not large enough to estimate the Boltzmann

distribution properly.

From Figs. 6 and 8, it is noticed that the MSEs become

worse whenever a new hidden layer is stacked on to the

existing autoencoder. This means that the dimensionality

Fig. 4 Details of PR backpropagation training

0 50 100 150 200
0

20

40

60

80

100

120

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 5 MSE of SA-MBP on ORL dataset

0 50 100 150 200
0

2

4

6

8

10

12

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 6 MSE of SA-MBP on ORL dataset (zoom-in view)

0 50 100 150 200
0

2

4

6

8

10

12

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 7 MSE of SRBM-SBP on ORL dataset

Neural Comput & Applic (2010) 19:1069–1079 1073

123



reduction of autoencoders occurs at the expense of recon-

struction efficiency as shown by the increase in the value of

MSEs for each stacking.

Table 1 shows the testing MSEs obtained for the three

architectures. From the results, we can conclude that the

SRBM-MBP outperforms the other two architectures with

respect to the reconstruction error. This is expected due to

two reasons. First, the model is pre-trained using RBM, the

weights are pre-adjusted near to global minima. Secondly,

the multiple BP applied for each stacking performs better

than the single BP in minimizing the MSE. Between these

two conditions, the first one, namely pre-training using

RBM is more vital compared to the second one, namely

multiple BP. However, it is noticed that PCA performs the

best. This is due to the fact that the training data size (200)

used is considerably too small for training an autoencoder.

As shown in Table 3, with larger datasets (MNIST), the

autoencoders outperform the PCA.

4.1.2 Training with image patches

The experiments with image patches for training are con-

ducted using the SRBM-MBP network. The ORL images

are cropped and rescaled a bit at the center so that the final

size is 32 9 32. Two experiments are conducted using

different image sizes. Image patches of size 4 9 4 and 8 9

8 are sampled consecutively for the first and second

experiments, respectively. In the first experiment, there are

64 patches extracted from each image, making up a total of

12800 patches for training. The layer sizes of SRBM-MBP

used in the first experiment are (4 9 4)-16-8-4-2-4-8-16-

(4 9 4). In the second experiment, 16 patches are extracted

from each image, making up a total of 3200 patches for

training. The layer sizes of SRBM-MBP used in the second

experiment are (8 9 8)-64-32-16-8-16-32-64-(8 9 8). The

number of epochs used for training the layers of both the

networks is 50?10?50?10?50?10?50.

Table 2 shows the test MSE values obtained for the

SRBM-MBP using image patches of different sizes. In both

the experiments, 128 dimensions (64 9 2 for the first

experiment and 16 9 8 for the second experiment) are used

to represent each face image. Even though more dimen-

sions are used compared to the cases of whole image and

PCA, the results are worse. This is another example of poor

performance of autoencoders due to small size datasets.

The results are totally different when large datasets are

used as shown in the next section. From Table 2, it is

noticed that the architecture with more weights gives better

reconstruction over architecture with lesser weights.

4.2 Reconstruction on MNIST handwritten digit

dataset

The MNIST dataset contains handwritten digit images of

size 14 9 14. There are 60000 training images and 10000

test images. The pixel values of images are normalized to

be in the range of 0 to 1 before feeding into the

autoencoders.

4.2.1 Training with the whole image

For experiments comparing the performances of the three

autoencoders, 6000 and 1000 images are used for training

and testing, respectively. The images are sampled ran-

domly from the original MNIST dataset according to the

distribution ratio of the digits. The three autoencoders are

preset to comprise 7 hidden layers in addition to the input

and output layers. The layer sizes are as follows: (14 9

14)-1000-500-250-30-250-500-1000-196. Normally, the

hidden layers of the encoder network are of smaller size

than the input layer for dimensionality reduction purpose.

0 50 100 150 200
0

2

4

6

8

10

12

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 8 MSE of SRBM-MBP on ORL dataset

Table 1 MSE of testing phase after 230 epochs on ORL dataset

Models Testing MSE

SA-MBP 9.1092

SRBM-SBP 7.6178

SRBM-MBP 6.8483

30-dimensional PCA 4.921

Table 2 Test MSE of SRBM-MBP using image patches on ORL

dataset

No. of

patches

Layer sizes of SRBM-MBP Testing MSE

64 (4 9 4)-16-8-4-2-4-8-16-(4 9 4) 9.2715

16 (8 9 8)-64-32-16-8-16-32-64-(8 9 8) 8.1828

1074 Neural Comput & Applic (2010) 19:1069–1079

123



However, more hidden units are used in the experiments to

retain more information from the input data. The deepest

hidden layer (with 30 neurons) uses linear activation

function, while the other layers use sigmoid activation

functions.

The stacked autoencoder SA-MBP is initialized with

small random weights and biases ranging from 0 to 0.1, while

the two architectures of stacked RBM, namely, SRBM-SBP

and SRBM-MBP are pre-trained for 50 epochs. The number

of epochs used for training different layers of SA-MBP and

SRBM-MBP is 50?10?50?10?50?10?50. In the case

of SRBM-SBP, the same number of total epochs, namely

230, is applied.

Figure 9 shows the experimental results obtained for

SA-MBP. Figure 10 shows the zoom-in view of Fig. 9. It is

observed that the MSE for both training and testing phases

are extremely high at the beginning of training of each

individual network. However, due to the large number of

training datasets employed (6000 images), a good con-

vergence is achieved at the end of the fine-tuning. A very

low difference between the MSEs of training and testing

can be observed from the figures.

The plot of MSE versus Epochs for SRBM-SBP is

shown in Fig. 11. It is clear from this figure that the RBM

pre-trains the network effectively as seen by the conver-

gence of the training and testing phases. The difference

between the MSEs of training and testing phases is much

smaller compared to the one obtained on ORL face dataset

as seen from Figs. 7 and 11. This is because the larger

dataset (MNIST) used for training the autoencoders makes

the autoencoders to have better generalization.

Figure 12 shows the performance of the SRBM-MBP. It

is clear from this figure that the RBM has proven to be a

good pre-training method as the spikes of MSEs are not

very high compared to those of SA-MBP.

The difference between the MSEs of training and testing

phases is much lower in the case of MNIST dataset com-

pared to the one obtained on ORL dataset. This is mainly

due to the large training data available in MNIST dataset.

From Figs. 10 and 12, it is seen that in the case of SA-MBP

and SRBM-MBP, the MSEs become worse whenever a

new hidden layer is stacked on to the existing structure.

This means that the dimensionality reduction of autoen-

coders occurs at the expense of reconstruction efficiency as

shown by the increase in the value of MSEs after each

stacking.

Table 3 shows the testing MSEs obtained from the

experiments. For the same number of training epochs, it is

once again found that the SRBM-MBP model has the

minimum testing MSE among all the architectures. The

MSEs of all the three architectures are lower compared to

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 9 MSE of SA-MBP on MNIST dataset

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 10 MSE of SA-MBP on MNIST dataset (zoom-in view)

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 11 MSE of SRBM-SBP on MNIST dataset

Neural Comput & Applic (2010) 19:1069–1079 1075

123



that of PCA in this case. As mentioned earlier, the results

show that the autoencoders outperform the PCA when they

are trained with a large dataset (MNIST).

Figure 13 shows the original and reconstructed images

for the different models. The MSEs for the last four rows

are 1.231, 1.403, 1.685 and 3.193, respectively. We can

conclude that the SRBM-MBP outperforms the other two

architectures and the PCA with respect to the reconstruc-

tion error.

Figure 14 shows the training time required for the three

architectures using an AMD Athlon 64 X2 Dual-Core

5200? 2.6GHz processor with 3G of RAM.

It is noticed that the SRBM-SBP is the most time con-

suming model compared to the other two architectures.

This is because in this model, the fine-tuning process of the

weights is performed only after the last stacking. Since the

whole network is huge (with many hidden layers), the fine-

tuning process is more time consuming.

4.2.2 Training with image patches

Experiments are conducted with SRBM-MBP architecture

where image patches, instead of whole image are used for

training. In these experiments, the MNIST images are

cropped with padding of 1 pixel to make the image size to

be 12 9 12. Image patches of size 4 9 4 are sampled

consecutively from the original images. Thus, there are 9

patches extracted from each image, making up a total of

54000 patches from 6000 training images. The layer sizes

of SRBM-MBP are (4 9 4)-16-8-4-2-4-8-16-(4 9 4). The

number of epochs used for training the different layers is

50?10?50?10?50?10?50. From the experiment, it is

found that the result for 9 patches is bad. It is mainly due to

the reason that most of the patches are with mean value of

0 (totally black), making the training samples imbalanced.

Another experiment is conducted, in which 4 patches of

size 4 9 4 are extracted from the center part of each image,

making a total number of 24000 training samples. The

same architecture of SRBM-MBP and training epochs are

used. Table 4 shows the values of test MSE obtained in

both of the experiments.

From Table 4, it can be noticed that significant

improvement is achieved with 4 patches (from the center

portion) even though less training samples are used. It is

unfair to compare the above results with the result obtained

using the whole image for training. This is because the

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Epochs

M
ea

n 
S

qu
ar

ed
 E

rr
or

Training
Testing

Fig. 12 MSE of SRBM-MBP on MNIST dataset

Table 3 MSE of testing phase after 230 epochs on MNIST dataset

Models Testing MSE

SA-MBP 1.685

SRBM-SBP 1.403

SRBM-MBP 1.231

30-dimensional PCA 3.193

Fig. 13 Original and reconstructed images. Row 1: original; row 2:

SRBM-MBP; row 3: SRBM-SBP; row 4: SA-MBP; row 5:

30-dimensional PCA

Fig. 14 Training time for the three architectures

1076 Neural Comput & Applic (2010) 19:1069–1079

123



9-patch and 4-patch experiments with SRBM-MBP above

use dimensions of 18 (9 9 deepest layer size) and 8 (4 9

deepest layer size), respectively to represent the code

space, whereas a dimension of 30 (1 9 deepest layer size)

is used for representing the code space when the whole

image is used for training. The 4-patch experiment is

repeated with a different architecture comprising layers of

sizes: (4 9 4)-32-32-16-7-16-32-32-(4 9 4). In this case, a

dimension of 28 (4 9 deepest layer size) is used to rep-

resent the code space. Table 5 shows the result obtained for

the experiment, and it is noticed that the MSE is reduced

significantly.

The result in Table 5 shows the advantages of using

image patches for training the autoencoders as the test

MSE value in this case is even lower than the values

obtained with the three types of autoencoders and PCA

using the whole image for training. From the results shown

in Tables 3 and 5, it is clear that the essential factor in

getting low MSE depends mainly on the complexity of the

autoencoder architecture. The weights from a large auto-

encoder with the whole image as the input, Wwhole, pro-

duces greater MSE compared to n patches of weights,

Wpatch, with a simpler architecture. In other words, we can

say that MSE(Wwhole) [ n 9 MSE(Wpatch). This is because

of the fact that the weights in the deeper layers are easier to

be fine-tuned in the simpler architecture using image pat-

ches. Another important factor that contributes good results

is the size of the hidden nodes. With less number of hidden

nodes, it is not possible to get good generalization, while

too many hidden nodes increases the complexity of the

architecture. It can be observed that the hidden nodes in the

first two layers of the autoencoders hold the most important

representations of the input. Thus, the size of the hidden

nodes in the first two layers must be the same or greater

than the size of the input layer to have enough weights to

hold the features of inputs.

It is expected that similar results will be obtained with

the other autoencoder architectures, namely SA-MBP and

SRBM-SBP, when image patches are used for training.

Thus, it can be concluded that using image patches instead

of the whole image will not only reduce the training time

but will also improve the performance with reduced MSE

values. These findings are essential for image compression

using autoencoders.

5 Image recognition using autoencoders

It is also of interest to investigate the correlation between the

reconstruction and the recognition of an image using auto-

encoders. The image recognition problem starts with the

training of autoencoders. The sizes of the hidden layers are

prefixed. Training images are fed into the autoencoders to

fine-tune the weights. The autoencoders learn the kernel

features of the images and represent them in the code space

(corresponding to the deepest layer). Those images with

strong relationship and which are identical are situated close

to each other in the code space. On the other hand, the images

that are not correlated are located far away in the code space.

After the training (learning) of autoencoders, the feature

codes for the corresponding image are obtained from the

code (deepest) layer of the autoencoders. To recognize an

image, the test image is fed into the trained autoencoder to

produce the relevant feature codes for the particular image.

Subsequently, k-nearest neighbor classifier is employed to

calculate the Euclidean distances of the feature codes

between the training images and the test images [9]. The

minimum distance of the feature code determines the group

to which that test image belongs. In this case, the autoen-

coders are playing the roles of feature extractors and the

k-nearest neighbor is used as a classifier.

The recognition problem using the autoencoder can be

implemented using the following steps:

1. Train the autoencoder with the images to be

recognized.

2. Obtain the feature codes for each training image using

the trained autoencoder.

3. Apply the test image and obtain the corresponding

feature codes.

4. Calculate the Euclidean distances between the feature

codes of the test image and the feature codes of all the

training images.

5. Based on the minimum Euclidean distance, the cluster

(group) to which the test image belongs is identified.

In the experiments conducted for comparing the per-

formances of the three autoencoders, the feature codes

from the deepest hidden layer are extracted for classifica-

tion. The performance results of the autoencoders are also

Table 4 Test MSE of SRBM-MBP using image patches on MNIST

dataset

Number of patches per image Test MSE

(whole image)

Test MSE

(per patch)

9 patches (size 4 9 4, from

the whole image)

7.6453 0.8495

4 patches (size 4 9 4, from

the center portion of the image)

2.6635 0.6659

Table 5 Test MSE of SRBM-MBP with 28 dimensions

Number of patches per image Test MSE (whole image)

4 patches (28 dimensions) 0.8232

Neural Comput & Applic (2010) 19:1069–1079 1077

123



compared with that of PCA. Experiments are also con-

ducted using image patches for training. Image patches are

sampled consecutively from the original images. The

SRBM-MBP is used in this experiment. The hidden layers

are of smaller sizes compared to the ones used in the

previous experiment with the whole image. Using image

patches reduces the training time significantly even though

the number of training epochs remains the same.

A discriminative method to digit recognition is to train

the autoencoder to output one of the ten classes based on

the input images. It is also possible to train ten autoen-

coders by fitting separate digit to each model. Recognition

is based on the model with the highest density to the input

image [10, 11]. The former method is used in our experi-

ments. For face recognition, ORL face dataset is used in

our experiments. On the other hand, MNIST dataset of

handwritten digits is used for the handwritten digit recog-

nition. The MNIST dataset is a subset of a larger dataset

available from the NIST.

5.1 Recognition on ORL face dataset

The dataset contains 400 images of size 112 9 92 for forty

different people with 10 images for each person. The

images are rescaled to size 37 9 30 using nearest neighbor

interpolation. The pixel values of the images are then

normalized to be in the range from 0 to 1. The dataset is

then divided into 200 training images, which contain the

first five images of each person, and 200 test images, which

contain the last five images of each person.

5.1.1 Training with the whole image

The layer sizes of the autoencoders are preset as follows:

(37 9 30)-500-300-100-30-100-300-500-1110. The deep-

est hidden layer (with 30 neurons) uses linear activation

function, while the other layers use sigmoid activation

functions. All the layers are fully connected. The SA-MBP

is initialized with small random weights and biases ranging

from 0 to 0.1, while the other two architectures, namely

SRBM-SBP and SRBM-MBP are pre-trained for 50

epochs. The number of training epochs used for training the

different layers of SA-MBP and SRBM-MBP is

50?10?50?10?50?10?50. The same number of total

epochs, namely 230 is applied to the SRBM-SBP.

Table 6 shows the recognition results for the three

architectures and PCA.

It is noted that the PCA outperforms all the three auto-

encoders. This may be due to three possible reasons. First, the

dataset is not large enough for training the autoencoders.

Secondly, the training parameters or architectures of the

autoencoders may not be optimum ones. Lastly, it might be

due to the so-called inadequacy problem for assessing per-

ceptual information using sum squared error function [12].

5.1.2 Training with image patches

The experiments with image patches for training are con-

ducted using SRBM-MBP. Image patches of size 4 9 4 and

8 9 8 are sampled from the original image size of 32 9 32,

making a total of 64 and 16 patches from each image,

respectively. The layer sizes used for SRBM-MBP for

these two cases are as follows: (4 9 4)-16-8-4-2-4-8-16-

(4 9 4) and (8 9 8)-64-32-16-8-16-32-64-(8 9 8), respec-

tively. The codes from the deepest hidden layer are

extracted for each image patch. It may be noted that in both

these cases a dimension of 128 (number of image patches 9

deepest hidden layer size) is used for the feature space.

Table 7 shows the recognition rates obtained in both the

experiments. As in the previous case, image patches of

bigger sizes yield better results.

5.2 Recognition on MNIST handwritten digit dataset

5.2.1 Training with the whole image

Table 8 shows the recognition rates of the three architec-

tures. It is found that the SRBM-MBP that gives the best

result for reconstruction (Table 3) performs poorly for the

recognition problem. In fact, its performance is the worst

among the three. The SRBM-SBP has the maximum rec-

ognition rate, showing that the recognition performance is

better for the autoencoder which is trained overall at one

shot. For SRBM-MBP, by changing the activation func-

tions at the deepest hidden layer to sigmoid functions, an

improvement on recognition accuracy is obtained. It is

believed that the improvement of recognition rate using the

sigmoid functions at the deepest hidden layer is applicable

to the other two architectures as well. For more detailed

comparisons of the performances of the autoencoders and

Table 6 Recognition rate of 30 dimensional codes on ORL dataset

Models Recognition rate (%)

SA-MBP 80.5

SRBM-SBP 86

SRBM-MBP 86

30-dimensional PCA 88

Table 7 Recognition rate of SRBM-MBP using image patches on

ORL dataset

Number of patches per image Recognition rate (%)

64 patches (size 4 9 4) 86

16 patches (size 8 9 8) 88.5

1078 Neural Comput & Applic (2010) 19:1069–1079

123



other techniques (PCA, SVM, etc.) on MNIST dataset,

refer to [1] and [5]. Recognition error rate of 1.2% is

reported in [1], where 60,000 images are used for training

the autoencoders that resemble SRBM-SBP.

5.2.2 Training with image patches

For experiments using image patches, 4 patches of sizes 4

9 4 and 6 9 6 are extracted from the center portion of each

image. The layer sizes used in these experiments are (4 9

4)-32-32-16-7-16-32-32-(4 9 4) and (6 9 6)-72-32-16-7-

16-32-72-(6 9 6) for image patches of size 4 9 4 and 6 9

6, respectively. The number of epochs used for training the

both networks is 50 10?50?10?50?10?50. Table 9

shows the recognition rate obtained in the experiments. It is

found that the performance of SRBM-MBP (with 28

dimensions in both experiments) using image patches is not

as good as the one using the whole image for training.

However, these experiments clearly demonstrate the fea-

sibility of using image patches for training, which saves

training time and also reduces the architecture size. It is

noticed from the experiments that using bigger patches

yields better recognition rates over the smaller patches.

6 Conclusions

We have shown that the autoencoders can be used effec-

tively for image reconstruction and recognition applica-

tions. The experimental results show that the autoencoders

outperform PCA if large training samples are provided.

Among the three types of autoencoders, the best perfor-

mance is achieved by the SRBM-MBP for image recon-

struction application. On the other hand, the SRBM-SBP

architecture gives the best result for image recognition

application. Experiments have also been performed to

show that the autoencoders can be trained successfully

using image patches instead of the whole image. The most

important contribution of this paper is in showing that

significant improvements on image reconstruction can be

obtained using image patches instead of whole images.

Further investigations on image recognition using different

SRBM-MBP architectures and image patches are needed to

improve the recognition rate.

References

1. Hinton GE, Salakhutdinov RR (2006) Reducing the dimension-

ality of data with neural networks. Science 313:504–507

2. Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy

layer-wise training of deep networks. Advances in Neural

Information Processing Systems 19. MIT Press, Cambridge, Tech

Rep 1282, Aug 2006

3. Tan CC, Eswaran C (2009) Using autoencoders for mammogram

compression. J Med Syst. doi:10.1007/s10916-009-9340-3

4. Polak E, Ribiére G (1969) Note sur la convergence de methods de

directions conjures. Revue Francais Information Recherche

Operationnelle 16:35–43

5. Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007)

An empirical evaluation of deep architectures on problems with

many factors of variation. In: Proceedings of the 24th interna-

tional conference on machine learning (ICLM). ACM, Corvalis,

Oregon, USA, pp 473–480

6. Hinton GE, Boltzmann Machine. Online. Scholarpedia,

2(5):1668. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:

diva-5586

7. Tee YW, Hinton GE (2000) Rate-coded Restricted Boltzmann

Machines for face recognition. In: Neural information processing

systems 13. MIT Press, Cambridge, pp 908–914

8. Salakhutdinov R, Mnih A, Hinton G (2007) Restricted Boltzmann

machines for collaborative filtering. In: Proceedings of the 24th

International Conference on Machine Learning. Corvallis, OR,

USA, pp 791–798

9. Cover T, Hart P Nearest neighbor pattern classification. IEEE

Trans Inf Theory 13(1):21–27

10. Hinton GE, Revow M, Dayan P (1995) Recognizing handwritten

digits using mixtures of linear models. In: Tesauro G, Touretzky

DS, Leen TK (eds) Advances in neural information processing

systems 7. MIT Press, Cambridge, pp 1015–1022

11. Hinton GE, Dayan P, Revow M (1997) Modeling the manifolds

of images of handwritten digits. IEEE Trans Neural Netw

8(1):65–74

12. Hinton GE, Salakhutdinov RR (2006) Supporting online material

for reducing the dimensionality of data with neural networks.

Science 313(5786), Online. Available: http://www.sciencemag.

org/cgi/content/full/313/5786/504/DC1

Table 8 Recognition rate on 30 dimensional codes on MNIST

dataset

Models Recognition rate (%)

SA-MBP 92.6

SRBM-SBP 92.8

SRBM-MBP 91.9

SRBM-MBP (sigmoid functions

at the deepest layer)

93.1

30-dimensional PCA 91.9

Table 9 Recognition rate of SRBM-MBP using image patches on

MNIST dataset

Layer sizes of SRBM-MBP Recognition rate (%)

(4 9 4)-32-32-16-7-16-32-32-(4 9 4) 90.0

(6 9 6)-72-32-16-7-16-32-72-(6 9 6) 91.3

Neural Comput & Applic (2010) 19:1069–1079 1079

123

http://dx.doi.org/10.1007/s10916-009-9340-3
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5586
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5586
http://www.sciencemag.org/cgi/content/full/313/5786/504/DC1%3e
http://www.sciencemag.org/cgi/content/full/313/5786/504/DC1%3e

	Reconstruction and recognition of face and digit images using autoencoders
	Abstract
	Introduction
	Architecture
	Training methods
	Polak Ribiére conjugate gradient backpropagation
	Stacked autoencoder
	Restricted Boltzmann machine (RBM)

	Image reconstruction using autoencoders
	Reconstruction on ORL face dataset
	Training with the whole image
	Training with image patches

	Reconstruction on MNIST handwritten digit dataset
	Training with the whole image
	Training with image patches


	Image recognition using autoencoders
	Recognition on ORL face dataset
	Training with the whole image
	Training with image patches

	Recognition on MNIST handwritten digit dataset
	Training with the whole image
	Training with image patches


	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


